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Abstract 
 

Population-based metaheuristic (P-metaheuristic) algorithms are trendy for solving opti-
mization problems. However, according to the NFL theorem, no metaheuristic is suited 
for solving all kinds of optimization problems. This study aims to determine the proper 
algorithms for the different modals of unconstrained optimization problems. We con-
ducted a post-analysis of one-way analysis of variance (ANOVA) to test 14 P-
metaheuristics, including evolutionary algorithms and swarm intelligence algorithms, on 
23 unconstrained optimization benchmark functions. Experimental results show that the 
Harris hawks optimization (HHO) algorithm and gray wolf optimizer (GWO) are robust 
and more suitable for unimodal functions. In addition to the HHO being the best, the 
whale optimization algorithm (WOA) and GWO are also good choices for multi-modal 
functions. The cuckoo search (CS) algorithm dominated over fixed-dimension multi-
modal functions. The study found that HHO, GWO, and WOA have similar mechanisms, 
such as searching (exploration), encircling, and attacking (exploitation) prey. The HHO 
and CS adopt the Lévy-flight-style random walk strategy to enhance the exploitation and 
exploration capabilities. Consequently, we acquired the proper P-metaheuristic to solve 
different modals and found superior mechanism to develop better P-metaheuristics in the 
future. 
 
Key words: metaheuristic algorithms, population-based, swarm intelligent, exploration 

and exploitation capabilities, post-analysis, one-way ANOVA. 
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Introduction 
 

Many real-world applications of  
unconstrained optimization aim to obtain 
the optimum ( minimize or maximize ) 
of D dimensional objective function 
(Tuba et al., 2011), as formulated below: 

   

where D is the number of decision vari-
ables (dimensions) to be optimized.  
 

Finding the unconstrained mini-
mizer is a critical problem for many 
practical applications. Furthermore, 
techniques for solving unconstrained op-
timization problems form the foundation 
for most methods for solving constrained 
optimization problems. The size of real-
world unconstrained optimization prob-
lems varies from small problems (e. g. D 
between 2 and 10) to huge problems (e. 
g. D in the hundreds or thousands). In 
many cases, the objective function f(x) is 
a computer routine that is expensive to 
evaluate, so even small problems tend to 
be time-consuming and difficult to solve 
(Dennis & Schnabel, 1989). That moti-
vates us to utilize the unconstrained op-
timization problems to find the proper 
algorithm. 

 
There are two main categories of 

techniques for solving optimization 
problems: The "Exact" methods are suit-
able for tackling smaller problems, while 
the "Approximate" methods can solve 
the no-differentiability and large-scale 
problems in a reasonable time (Ezugwu 
et al., 2021).  

 
Approximate algorithms can be fur-

ther divided into specific heuristics and 

metaheuristics. Specific heuristics are 
problem-dependent. Metaheuristics are 
high-level problem-independent tech-
niques; in other words, metaheuristics 
are more general, faster, and suitable for 
solving large problems (Ezugwu et al., 
2021; Talbi, 2009). Metaheuristics can 
find reasonable quality solutions to 
many complexes and NP-hard (non-
deterministic polynomial time-hard) 
problems (Ezugwu et al., 2021). The 
characteristics of metaheuristics assist 
other scientists in quick learning, im-
proving (Chao et al., 2020), and apply-
ing them to their problems (Pan et al., 
2019).  

 
Generally speaking, metaheuristic 

algorithms can be divided into two main 
categories (Talbi, 2009): Single-
solution-based metaheuristics, such as 
simulated annealing (SA) (Kirkpatrick et 
al., 1983), and population-based meta-
heuristics, such as genetic algorithm 
(GA) (Goldberg, 1989).  

 
As the name indicates, the Single-

solution-based metaheuristics (S-
metaheuristics) search process starts 
with one candidate solution and im-
proves it through iterations. The popula-
tion-based metaheuristics (P-meta-
heuristics) uses a set of agents (i.e., pop-
ulation) to perform the optimization pro-
cess in each iteration. Compared to S-
metaheuristics, P-metaheuristics have 
the following strengths: multiple agents 
sharing the information of the search 
space, which results in sudden jumps 
toward the promising area, assisting each 
other to avoid local optima, and having 
better exploration capability (Mirjalili et 
al., 2014). The no free lunch (NFL) theo-
rem has proved that no metaheuristic 
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could be best suited for solving all kinds 
of optimization problems (Wolpert & 
Macready, 1997).  

 
Taken together, the advantages of 

P-metaheuristics and the NFL theorem 
make us want to realize which P-
metaheuristic algorithm is more suitable 
for solving a certain kind of problem. So, 
we try to conduct the one-way analysis 
of variance (ANOVA) to find better al-
gorithms for the different modals of un-
constrained optimization problems. One-
way ANOVA could determine whether 
there are any statistically significant dif-
ferences between the means of two or 
more independent (unrelated) groups. 
And we try to find common characteris-
tics of superior algorithms to develop an 
advanced algorithm in the future.  

 
The rest of this paper is organized 

as follows. Section 2 reviews the works 
of literature on metaheuristic algorithms. 
Section 3 presents the one-way ANOVA, 
23 benchmark functions, and parameters 
of the 14 methods. Section 4 introduces 
the experimental results and analyzes 
them. Finally, in Section 5, conclusions 
are given. 

 
Literature Review 

 
All metaheuristic algorithms must 

be equipped with a randomization mech-
anism and a particular tradeoff between 
local search and global exploration 
(Yang, 2011). Therefore, they have 
higher local optima avoidance ability 
than conventional or classical optimiza-
tion algorithms (Mirjalili, 2016). Meta-
heuristic algorithms with stochastic 
mechanisms regard optimization prob-
lems as black-boxes (Droste et al., 2006). 

In other words, the derivation of the 
mathematical models is not necessary 
because such optimization mechanisms 
only change the inputs and monitor the 
system's outputs to minimize (maximize) 
the objection function (outputs). There-
fore metaheuristic algorithms can readily 
apply to different fields (Mirjalili, 2016).  

 
As mentioned earlier, the general 

classification of the metaheuristics are S-
metaheuristics and P-metaheuristics 
(Talbi, 2009). P-metaheuristics can be 
categorized into three main groups: evo-
lution-based, physics-based, and swarm-
based methods (Ezugwu et al., 2021; 
Heidari et al., 2019; Mirjalili & Lewis, 
2016). 

 
Evolution-based algorithms are also 

called evolutionary algorithms (EA), in-
spired by evolution behaviors in nature 
(Heidari et al., 2019). The most popular 
EA is GA (Goldberg, 1989), which 
evolves a set of initial random solutions. 
Each new population is a recombination 
and mutation of the individuals in the 
previous generation. Since the best indi-
viduals assessed by the objective func-
tion have a higher probability of being 
selected and generating a new popula-
tion, the new population may be better 
than the previous generation(s). Another 
well-known EA is differential evolution 
(DE) (Storn & Price, 1997). Its main 
evolutionary behaviors are mutation, 
crossover, and selection. The mutation 
of DE is to generate a mutant vector by 
adding the weighted difference between 
two vectors to a third vector. These three 
random mutually different vectors are 
sampled from the previous population 
except the target vector. Jaya (a Sanskrit 
word meaning victory) is based on the 
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idea that the candidate solution should 
be close to the best solution and avoid 
the worst solution (Venkata Rao, 2016).  

 
Physics-based algorithms are in-

spired by the physical laws or imitate the 
physical rules in the universe, such as 
multi-verse optimizer (MVO) (Mirjalili 
et al., 2015) and sine cosine algorithm 
(SCA) (Mirjalili, 2016). The main inspi-
rations of MVO are based on three con-
cepts in cosmological theory: white hole, 
black hole, and wormhole. These three 
concepts implement exploration, exploi-
tation, and local search, respectively. 
MVO employs the wormhole existence 
probability (WEP), which increases line-
arly over the iterations, to emphasize 
exploitation as the evolution of the opti-
mization process. On the contrary, the 
traveling distance rate (TDR), which de-
creases over the iterations to enhance the 
local search around the best-obtained 
universe (solution). According to the 
value of sine and cosine functions, the 
SCA explores or exploits the search 
space and constantly updates the posi-
tion of candidate solutions by adopting 
the best solution obtained so far. 

 
The swarm-based methods are also 

called swarm intelligence (SI) algo-
rithms (Beni & Wang, 1993). The inspi-
ration of SI techniques mostly mimic the 
social behaviors (e.g., distributed, self-
organized systems, decentralized) of 
creatures in nature, such as flocks of 
birds, schools of fish, groups of wolves 
(Ezugwu et al., 2021). SI algorithms 
preserve search space information 
throughout the iteration process, and 
utilize memory to save the best solution 
obtained so far. These algorithms have 
fewer parameters, fewer operators com-

pared, and are easy to implement 
(Mirjalili et al., 2014).  

 
The most popular SI technique is 

particle swarm optimization (PSO) 
(Eberhart & Kennedy, 1995), which was 
inspired by the social behavior of birds 
flocks. The PSO algorithm employs mul-
tiple particles, and each particle in the 
swarm represents a candidate solution to 
the optimization problem. Each particle 
is updated according to the position of 
the global best particle and its own (local) 
best position. 

 
Firefly algorithm (FFA) was in-

spired by the flashing characteristics of 
fireflies and their social behaviors of at-
tracting each other by brightness (Yang, 
2009). The brightness is proportional to 
the attractiveness and determined by the 
objective function. Then cuckoo search 
(CS) algorithm   was inspired by the 
combination of special interesting brood 
parasitic behavior of cuckoos and the 
Lévy-flight-style random walk process, 
modeled a power-law step-length distri-
bution (Yang & Deb, 2009). Lévy-
Flights is a series of straight flight paths 
punctuated by a sudden 90∘turn and suc-
cessfully applied to many optimization 
algorithms (Pavlyukevich, 2007). Lévy-
Flights and random walks enhance the 
exploitation and exploration capabilities, 
respectively. This particular operator 
will make sure the optimization process 
will not be trapped in a local optimum 
(Yang & Deb, 2009). Bat algorithm 
(BAT) was inspired by the echolocation 
behavior of bats when they are navigat-
ing and hunting (Yang, 2010). BAT re-
duces the loudness and increases pulse 
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emission rate when they approach their 
prey.  

 
Grey Wolf optimizer (GWO) was 

inspired by the leadership hierarchy of 
grey wolves (Canis lupus) and their 
hunting mechanism, divided into three 
leading operators (i.e. searching, encir-
cling, and attacking prey) (Mirjalili et al., 
2014). The social order assists GWO in 
saving the best three solutions obtained 
so far. The searching operator imple-
ments the exploration. Encircling and 
attacking mechanisms conducts the ex-
ploitation. Moth-flame optimization 
(MFO) algorithm was inspired by the 
navigation method of moths in nature 
(Mirjalili, 2015). MFO modeled the 
deadly spiral movement of each moth 
around a relative flame. The moth’s po-
sition update can take place around dif-
ferent flames, and the unique mechanism 
makes the abrupt movement of moths in 
the search space and enhance the explo-
ration. MFO gradually decreases in the 
number of flames to balance exploration 
and exploitation capabilities. Whale op-
timization algorithm (WOA) was in-
spired by humpback whales' unique 
bubble-net hunting behavior (Mirjalili & 
Lewis, 2016). The exploitation phase is 
implemented by the bubble-net attacking 
method, which can be modeled by the 
shrinking encircling mechanism or the 
spiral updating position. Salp swarm al-
gorithm (SSA) was inspired by the effi-
cient swarming behavior of the salp 
chain when navigating and foraging 
(Mirjalili et al., 2017). The population is 
divided into two groups: leader and fol-
lowers. SSA assumed that the best solu-
tion obtained so far is the food source 
pursued by the leader of the salp chain. 
Each follower updated its position by the 

average of the previous salp and itself. 
SSA utilizes the adaptive gradually de-
crease parameter to balance the leader 
salp's exploration and exploitation capa-
bilities. Harris hawks optimizer (HHO) 
was inspired by the cooperative and sur-
prise pounce chasing style behavior of 
Harris hawks (Heidari et al., 2019).  
HHO provides four operators of search-
ing strategy based on stochastic parame-
ters to enhance the exploitation phase. 
HHO integrates the Lévy-Flights-based 
patterns with short-length jumps into the 
rapid dive mechanism to mimic the ir-
regular, abrupt, and rapid dive behaviors 
of Harris hawks to enhance the exploita-
tive capability. 

 
Because of the excellent explora-

tion capability, local optima avoidance, 
search space information sharing, and 
other advantages, the research commu-
nity prefer to develop population-based 
metaheuristics than single solution-based 
recently. (Ezugwu et al., 2021; Mirjalili 
et al., 2014) Yang (2011) indicated that 
the searching process has two phases: 
exploration (diversification) and exploi-
tation (intensification) regardless of the 
various classes of P-metaheuristics. In 
the exploration phase, metaheuristics 
should use and enhance its randomized 
operators to thoroughly explore diverse 
regions and borders of the search space. 
A well-designed metaheuristic should 
have a sufficiently rich random mecha-
nism to efficiently allocate more ran-
domized solutions to different regions of 
the feature space in the early steps of the 
optimization process. The exploitation 
phase is normally implemented after the 
exploration phase. In the exploitation 
phase, the metaheuristic tries to visit the 
local regions around the best solution 
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intensively instead of all-inclusive re-
gions of the feature space (Heidari et al., 
2019; Yang, 2011). Finding a reasonable, 
delicate balance between exploration and 
exploitation is the most critical to the 
overall efficiency and performance of 
any metaheuristic algorithm. Otherwise, 
the probability of getting stuck in local 
optima (LO) and premature convergence 
drawbacks increases (Heidari et al., 2019; 
Yang, 2011).  

 
Although the NFL theorem has 

proved that no metaheuristic could be 
best suited for solving all kinds of opti-
mization problems, the research com-
munity still attempted to find better algo-
rithms for optimization, especially for 
complex NP-hard optimization problems 
(Wolpert & Macready, 1997; Yang, 
2011). This work focuses on finding the 
proper, efficient P-metaheuristic for dif-
ferent kinds of unconstrained benchmark 
functions, not for all types of problems. 
 

Research Method 
 

One-way ANOVA 
 

Analysis-of-Variance (ANOVA) is 
a statistical model used to analyze the 
differences among or between the means 
of their groups (Fisher, 1925). ANOVA 
is based on the law of total variance 
(Sum-of-Squares, SS), where the vari-
ances of observations in particular fac-
tors are partitioned into components at-
tributable to different sources of varia-
tion. The principal purpose of ANOVA 
is to research the relationship between 
the continuous data type of the depend-
ent variable and the categorical data type 
of independent variables. ANOVA can 
provide the statistical t-test, and F-test 

applies two or more categories of means 
of the independent variables respectively 
to test whether they are equal. If there 
are significant differences, we perform 
post-analysis or multi-comparison for 
selecting proper metaheuristic algo-
rithms for the different modals of uncon-
strained optimization problems. 

 
In this paper, we adopt one-way 

ANOVA to compare the effects of the 
dependent variable caused by different 
treatments of the particular independent 
variable. We want to know whether dif-
ferent P-metaheuristic algorithms have a 
significant impact on solving benchmark 
functions to help us find the proper P-
metaheuristic for different types of un-
constrained problems. 

 
Benchmark Functions 

 
To find proper and efficient P-

metaheuristics for different kinds of un-
constrained problems, we utilize typical 
23 benchmark functions used in the re-
cent pieces of literature (Heidari et al., 
2019; Mirjalili, 2015; Mirjalili & Lewis, 
2016; Mirjalili et al., 2014; Yao & Liu, 
1997; Yao et al., 1999).  

 
F1- F7 are unimodal functions with 

only one global optimum but no local 
optima (Mirjalili, 2016). F6 is a discon-
tinuous step function. F7 is a noisy quar-
tic function (Yao et al., 1999). F8- F13 
are multi-modal functions with multiple 
local optima and increase exponentially 
with the function's dimension (Mirjalili, 
2016). F1- F13 are high-dimensional 
problems. They also could be scalable 
on dimension to expand the desired 
number of the design variables. F14 - 
F23 are fixed-dimensional functions 
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with only a few local minima. They can-
not adjust the number of design variables 
but provide different types of search 
space compared to multi-modal (F8-F13) 
functions (Mirjalili & Lewis, 2016). 
Over all, the unimodal functions (F1-F7) 
with unique global optima and no other 
local optima can test the exploitation (in-

tensification) capability of optimization 
algorithms. On the contrary, multi-modal 
functions (F8-F23) can reveal the explo-
ration (diversification) and the ability to 
avoid the stagnation of poor local optima 
(Heidari et al., 2019).  Figure 1. shows 
the typical 2D plots of the benchmark 
functions considered in this paper.

 

 
F6 

 
F8 

 
F14 

 
F7 

 
F9 

 
F17 

(a) Unimodal (b) Multimodal (c) Fixed- dimension multimodal 

Figure 1. Typical 2D plots of benchmark functions 

 
 

Compared Algorithms and  
Parameter Setup 

 
To find the proper algorithm, we 

compared with 14 well-known and state-
of-the-art P-metaheuristic algorithms 
such as PSO, MVO, GWO, MFO, CS, 
BAT, WOA, FFA, SSA, GA, HHO, 
SCA, JAYA, and DE. 

 

All algorithms were implemented 
under PyCharm 2018.3.7 (Community 
Edition) on a laptop with a Windows 10 
64-bit Home edition, i5-8250U CPU, 
and 12 GB RAM. The population size 
and maximum iterations of all optimiz-
ers are set to 30 and 500, respectively. 
Other parameters of those Population-
based metaheuristic algorithms we 
choose in this study are shown in  
Table 1. 



2022-1241 IJOI 
https://www.ijoi-online.org/ 

 
The International Journal of Organizational Innovation 

Volume 14 Number 4, April 2022 

422 

 
Experimental Results and Analysis 

 
Evaluation of Exploitation Capability 

(Functions F1–F7) 
 
For each benchmark function, those 

chosen P-metaheuristic algorithms run 
30 times starting from different popula-
tions randomly generated. The average 
(AVG) and the corresponding standard 
deviation (STD) of statistical results are 
shown in Table 2. 

 
In terms of AVG from Table 2, the 

HHO and WOA algorithms are more 
competitive. The HHO algorithm ob-
tained the best average (AVG) on F3, F4, 
F5, and F7 (4 out of 7), and the WOA 
algorithm acquired the best average on 
F1 and F2 (2 out of 7).  The post-
analysis of one-way ANOVA in Table 3 
shows that the HHO and GWO always 
belong to the first subset, but the WOA 
algorithm obtained a worse subset on F3 
and F4. In other words, HHO and GWO 
algorithms are robust and more suitable 
for unimodal functions. It's worth men-
tioning that there is no significant differ-
ence on F2 for all selected algorithms, 
and the BAT algorithm got the worst 
subset for all unimodal functions. 

 
 

Evaluation of Exploration 
 Capability (Functions F8–F23) 

 
F8- F13 are multi-modal functions 

with multiple local optima. In terms of 
AVG from Table 4, the HHO algorithm 
is the best. The post-analysis of one-way 
ANOVA from Table 5 shows that only 
the HHO stays in the first subset for each 
multi-modal function (F8- F13). We can 

then determine that the HHO is the most 
suitable for multi-modal functions. On 
the other hand, besides HHO, the WOA 
and GWO are also good choices for mul-
ti-modal functions. 

 
F14 - F23 are fixed-dimensional 

functions with only a few local minima. 
In terms of AVG from Table 6, the CS 
algorithm got 5 in 10 of the best average 
(AVG) on F14 and F19 through F22. 
The DE algorithm got 3 in 10 on F18, 
F19, and F23. The post-analysis of one-
way ANOVA from Table 7 shows that 
only the CS stays in the first subset for 
each multi-modal function (F14- F23). 
We can determine that the CS is the 
most suitable meta-heuristic algorithm 
for fixed-dimensional functions. The DE 
is competitive except on F21 and F22. In 
addition to CS, the DE is also a good 
option for fixed-dimensional functions. 

 
Discussion of Results 

 
According to previous sections, we 

can recognize that the HHO and GWO 
algorithms are robust and more suitable 
for unimodal functions. In addition to 
the HHO, the WOA and GWO are also 
good choices for multi-modal functions. 
Except for the CS, the DE is also a good 
option for fixed-dimensional multi-
modal functions. 

 
Therefore, the HHO, GWO, WOA, 

and CS population-based meta-heuristic 
algorithms are worth investigating. The 
HHO, GWO, and WOA have similar 
mechanisms, such as searching (explora-
tion), encircling, and attacking (exploita-
tion) prey. The HHO and CS utilize the 
Lévy-flight-style random walk strategy 
to enhance the exploitation and 
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Table 1. The parameters setting of algorithms 
 

No. Algorithm  Parameter   

1 Particle swarm optimization, PSO 
(Eberhart & Kennedy, 1995) 

Inertia weight minimum,  
Inertia weight maximum,  
Local best parameter, C1 
Global best parameter, C2 

0.2 
0.9 
2 
2 

2 Multi-verse optimizer, MVO (Mirjalili 
et al., 2015) 

Wormhole existence probability min-
imum,  
Wormhole existence probability 
maximum,  
Exploitation accuracy, p 

 
0.2 
 
1 
6 

3 Grey wolf optimizer, GWO (Mirjalili 
et al., 2014)  Convergence constant, a [2, 0] 

4 Moth-flame optimization, MFO 
(Mirjalili, 2015) 

Convergence constant, r 
Spiral factor, b 

[-1, -2] 
1 

5 Cuckoo search, CS (Yang & Deb, 
2009) 

Discovery rate of alien eggs/ solu-
tions,  

0.25 

6 Bat algorithm, BAT(Yang, 2010) 

Loudness, A 
Pulse rate, r 
Frequency minimum,  
Frequency maximum,  

0.5 
0.5 
0 
2 

7 Whale optimization algorithm, WOA 
(Mirjalili & Lewis, 2016) 

Convergence constant, a 
Convergence constant, a2 
Spiral factor, b 

[2,0] 
[-1,-2] 
1 

8 Firefly algorithms, FFA (Yang, 2009) 
Randomization parameter, α 
Attractiveness parameter,      
Absorption coefficient, γ 

0.5 
0.20 
1 

9 Salp swarm algorithm, SSA (Mirjalili 
et al., 2017)  Convergence constant,  [2, ] 

10 Genetic algorithm, GA (Goldberg, 
1989) 

Crossover probability 
Mutation Probability 
Elitism parameter 

1 
0.1 
2 

11 Harris hawks optimization, HHO 
(Heidari et al., 2019) 

Factor of escaping energy, E1 
Levy flight constant, β 

[2,0] 
1.5 

12 Sine cosine algorithm, SCA (Mirjalili, 
2016) Convergence constant, a [2,0] 

13 JAYA(Venkata Rao, 2016) No algorithm-specific parameter － 

14 Differential evolution, DE (Storn & 
Price, 1997)  

Mutation factor, F 
Crossover ratio, CR 

0.5 
0.7 
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Table 2. Results of unimodal benchmark functions 
 

Benchmark PSO MVO GWO MFO CS BAT WOA FFA SSA GA HHO SCA JAYA DE 
F1 AVG 1.43E-04 1.18E+00 2.50E-27 1.00E+03 1.24E+01 1.90E+04 2.26E-72 6.65E-03 2.17E-08 3.04E+03 6.74E-62 4.34E+01 9.61E-05 1.61E-04 

 STD 1.05E-04 3.27E-01 4.23E-27 3.00E+03 4.86E+00 7.17E+03 1.21E-71 2.30E-03 5.09E-09 7.66E+02 3.63E-61 8.49E+01 2.28E-04 9.85E-05 

F2 AVG 5.03E+00 8.92E-01 8.19E-17 4.23E+01 6.16E+00 2.15E+03 2.04E-50 6.83E-01 9.32E-01 1.59E+01 6.51E-35 1.98E-02 2.76E-04 4.73E-03 

 STD 6.20E+00 6.71E-01 5.61E-17 1.99E+01 1.57E+00 1.03E+04 7.09E-50 8.94E-01 9.42E-01 2.61E+00 2.73E-34 2.70E-02 2.26E-04 2.09E-03 

F3 AVG 7.71E+01 2.30E+02 8.40E-06 1.86E+04 2.16E+03 5.20E+04 4.31E+04 9.42E+02 5.99E+02 1.51E+04 3.52E-48 8.40E+03 2.20E+04 2.00E+04 

 STD 3.18E+01 1.11E+02 1.68E-05 1.09E+04 5.38E+02 2.44E+04 1.23E+04 5.42E+02 5.31E+02 3.05E+03 1.90E-47 4.73E+03 1.00E+04 3.73E+03 

F4 AVG 1.12E+00 2.19E+00 6.57E-07 5.82E+01 1.12E+01 5.77E+01 6.02E+01 4.47E-01 7.25E+00 4.94E+01 4.96E-33 3.53E+01 1.90E+01 1.19E+01 

 STD 2.26E-01 9.48E-01 4.36E-07 1.03E+01 2.20E+00 1.04E+01 2.25E+01 3.04E-01 2.62E+00 5.81E+00 2.02E-32 1.20E+01 6.66E+00 4.73E+00 

F5 AVG 2.29E+02 5.29E+02 2.69E+01 1.26E+04 6.88E+02 1.86E+07 2.81E+01 1.91E+02 9.95E+01 1.82E+06 1.10E-02 7.65E+04 3.12E+02 4.00E+01 

 STD 5.48E+02 6.68E+02 6.45E-01 3.04E+04 3.31E+02 1.37E+07 5.45E-01 3.96E+02 1.52E+02 1.48E+06 1.52E-02 2.37E+05 7.57E+02 2.96E+01 

F6 AVG 1.83E-04 1.12E+00 7.01E-01 1.33E+03 1.26E+01 2.15E+04 4.26E-01 6.09E-03 2.34E-08 3.29E+03 1.27E-04 1.43E+01 4.04E+00 1.77E-04 

 STD 3.66E-04 3.08E-01 4.05E-01 3.38E+03 4.41E+00 6.64E+03 2.25E-01 2.24E-03 7.92E-09 1.04E+03 1.38E-04 1.39E+01 6.96E-01 1.11E-04 

F7 AVG 2.81E+00 3.87E-02 2.28E-03 3.89E+00 1.01E-01 9.22E+00 3.88E-03 3.80E-01 9.41E-02 1.36E+00 1.82E-04 1.19E-01 6.45E-02 4.27E-02 

 STD 4.44E+00 1.39E-02 1.09E-03 6.17E+00 3.51E-02 4.13E+00 3.17E-03 1.42E-01 3.45E-02 6.58E-01 2.38E-04 1.03E-01 6.63E-02 1.31E-02 

 
 
 
 

Table 3. Homogeneous subsets of different algorithms by post-analysis of one-way 
ANOVA on unimodal functions 

 
Benchmark PSO MVO GWO MFO CS BAT WOA FFA SSA GA HHO SCA JAYA DE 

F1 1 1 1 2 1 3 1 1 1 2 1 1 1 1 

F2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

F3 1 1 1 3 1 5 4 1 1 3 1 2 3 3 

F4 2 2 1 8 3 7 6 2 3 7 1 5 4 3 

F5 1 1 1 1 1 2 1 1 1 1 1 1 1 1 

F6 1 1 1 2 1 3 1 1 1 2 1 1 1 1 

F7 3 1 1 3 1 4 1 1 1 2 1 1 1 1 
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Table 4. Results of multi-modal benchmark functions 
 

Benchmark PSO MVO GWO MFO CS BAT WOA FFA SSA GA HHO SCA JAYA DE 
F8 AVG -5.01E+03 -7.74E+03 -6.12E+03 -8.38E+03 -1.00E+04 -3.33E+03 -1.06E+04 -7.41E+03 -7.37E+03 -1.04E+04 -1.25E+04 -3.74E+03 -5.09E+03 -6.09E+03 

 STD 1.20E+03 7.04E+02 6.61E+02 7.27E+02 1.47E+03 1.18E+03 1.58E+03 7.18E+02 6.18E+02 2.95E+02 2.58E+02 2.31E+02 6.90E+02 4.72E+02 

F9 AVG 1.13E+02 1.20E+02 1.39E+00 1.77E+02 1.01E+02 9.55E+01 1.89E-15 8.04E+01 4.65E+01 8.14E+01 0.00E+00 4.86E+01 1.08E+02 1.86E+02 

 STD 3.09E+01 2.40E+01 2.35E+00 4.14E+01 1.30E+01 4.66E+01 1.02E-14 1.80E+01 1.68E+01 1.25E+01 0.00E+00 4.44E+01 4.45E+01 9.61E+00 

F10 AVG 1.04E-01 1.92E+00 1.01E-13 1.53E+01 4.38E+00 1.63E+01 4.35E-15 3.79E-01 1.89E+00 1.11E+01 4.44E-16 1.33E+01 2.65E-02 6.21E-01 

 STD 3.31E-01 5.42E-01 1.73E-14 7.72E+00 4.88E-01 1.10E+00 2.31E-15 5.04E-01 8.19E-01 7.79E-01 0.00E+00 8.79E+00 1.13E-01 3.31E+00 

F11 AVG 8.64E-03 8.55E-01 5.51E-03 9.20E+00 1.11E+00 1.83E+02 8.53E-03 2.01E-02 8.76E-03 2.62E+01 0.00E+00 9.21E-01 1.21E-01 5.86E-03 

 STD 7.93E-03 6.97E-02 8.28E-03 2.71E+01 3.90E-02 8.11E+01 4.59E-02 5.69E-03 9.90E-03 6.20E+00 0.00E+00 3.93E-01 1.62E-01 1.46E-02 

F12 AVG 1.25E-01 2.41E+00 1.49E-01 9.74E+00 3.87E+00 2.52E+07 7.56E-02 5.89E-01 5.20E+00 2.64E+05 7.67E-06 3.41E+04 1.16E+01 3.66E-01 

 STD 1.43E-01 1.22E+00 9.62E-02 4.68E+00 1.03E+00 2.27E+07 8.68E-02 4.49E-01 2.51E+00 1.02E+06 1.29E-05 1.16E+05 5.47E+01 7.06E-01 

F13 AVG 2.64E-03 1.69E-01 6.61E-01 4.49E+00 8.61E+00 7.73E+07 5.77E-01 5.04E-03 2.17E+00 1.02E+06 8.83E-05 2.92E+04 2.02E+04 1.23E-03 

 STD 4.62E-03 1.20E-01 2.72E-01 1.02E+01 3.51E+00 5.42E+07 3.64E-01 6.90E-03 6.19E+00 1.02E+06 1.08E-04 6.08E+04 9.40E+04 1.47E-03 

 
 
 

Table 5. Homogeneous subsets of different algorithms by post-analysis of one-way 
ANOVA on multi-modal functions 

 
Benchmark PSO MVO GWO MFO CS BAT WOA FFA SSA GA HHO SCA JAYA DE 

F8 8 5 6 4 3 9 3 5 5 2 1 9 8 7 

F9 5 5 1 6 5 5 1 3 2 4 1 2 5 7 

F10 1 2 1 4 2 4 1 1 2 3 1 3 1 1 

F11 1 1 1 2 1 3 1 1 1 2 1 1 1 1 

F12 1 1 1 1 1 2 1 1 1 1 1 1 1 1 

F13 1 1 1 1 1 2 1 1 1 1 1 1 1 1 
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Table 6. Results of fixed-dimension multi-modal benchmark functions 
 

Benchmark PSO MVO GWO MFO CS BAT WOA FFA SSA GA HHO SCA JAYA DE 

F14 AVG 2.61E+00 9.98E-01 4.27E+00 1.53E+00 9.98E-01 1.05E+01 2.41E+00 1.20E+00 1.03E+00 9.98E-01 1.43E+00 1.99E+00 1.11E+00 1.23E+00 

 STD 2.52E+00 4.60E-11 3.56E+00 1.29E+00 1.04E-15 5.54E+00 2.60E+00 4.73E-01 1.78E-01 9.17E-05 9.43E-01 1.87E+00 5.32E-01 9.43E-01 

F15 AVG 3.02E-03 6.03E-03 4.39E-03 1.68E-03 5.67E-04 9.51E-03 5.86E-04 7.57E-04 8.54E-04 1.23E-03 3.12E-04 1.02E-03 1.33E-03 2.06E-03 

 STD 5.79E-03 8.53E-03 7.99E-03 3.49E-03 1.72E-04 9.78E-03 3.30E-04 2.49E-04 2.85E-04 4.18E-04 3.76E-06 3.55E-04 6.61E-04 5.10E-03 

F16 AVG -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.00E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 

 STD 4.15E-16 2.62E-07 1.58E-08 4.44E-16 2.35E-13 1.47E-01 3.31E-10 2.21E-09 1.94E-14 2.15E-04 2.83E-09 5.81E-05 9.84E-05 4.44E-16 

F17 AVG 3.98E-01 4.75E-01 3.98E-01 3.98E-01 3.98E-01 5.52E-01 3.98E-01 3.98E-01 3.98E-01 3.99E-01 3.98E-01 4.00E-01 3.98E-01 3.98E-01 

 STD 0.00E+00 4.14E-01 3.32E-06 0.00E+00 1.95E-09 5.76E-01 1.52E-05 6.07E-09 4.18E-14 8.90E-04 1.34E-06 2.15E-03 1.58E-03 0.00E+00 

F18 AVG 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 7.50E+00 3.00E+00 3.00E+00 3.00E+00 3.01E+00 5.70E+00 3.00E+00 3.21E+00 3.00E+00 

 STD 1.64E-15 2.50E-06 4.42E-05 1.97E-15 2.16E-15 1.57E+01 1.35E-04 4.42E-08 2.27E-13 1.32E-02 8.10E+00 8.78E-05 4.97E-01 1.30E-15 

F19 AVG -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.84E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.85E+00 -3.61E+00 -3.86E+00 

 STD 2.94E-03 2.79E-06 2.75E-03 8.88E-16 6.73E-16 1.39E-01 7.63E-03 9.80E-10 3.42E-13 2.36E-04 2.00E-05 2.72E-03 1.99E-01 8.88E-16 

F20 AVG -3.19E+00 -3.25E+00 -3.26E+00 -3.23E+00 -3.32E+00 -3.27E+00 -3.19E+00 -3.28E+00 -3.21E+00 -3.30E+00 -3.27E+00 -2.91E+00 -1.82E+00 -3.24E+00 

 STD 2.98E-01 6.03E-02 7.27E-02 6.21E-02 2.70E-06 5.93E-02 1.75E-01 5.90E-02 3.81E-02 4.44E-02 6.04E-02 2.80E-01 4.56E-01 5.71E-02 

F21 AVG -8.76E+00 -6.75E+00 -8.34E+00 -6.75E+00 -1.01E+01 -5.44E+00 -8.91E+00 -7.69E+00 -8.44E+00 -6.62E+00 -5.55E+00 -1.77E+00 -1.46E+00 -9.36E+00 

 STD 2.22E+00 2.37E+00 2.53E+00 2.85E+00 9.64E-07 3.00E+00 2.13E+00 3.25E+00 2.84E+00 3.07E+00 1.52E+00 1.61E+00 9.53E-01 2.24E+00 

F22 AVG -6.82E+00 -7.13E+00 -9.36E+00 -5.54E+00 -1.02E+01 -4.77E+00 -7.30E+00 -7.60E+00 -6.84E+00 -5.87E+00 -5.06E+00 -3.02E+00 -1.55E+00 -8.76E+00 

 STD 3.30E+00 3.17E+00 2.09E+00 3.40E+00 8.38E-06 3.33E+00 2.87E+00 3.43E+00 3.43E+00 3.49E+00 6.92E-05 1.93E+00 8.67E-01 2.85E+00 

F23 AVG -8.67E+00 -8.82E+00 -1.05E+01 -8.90E+00 -1.05E+01 -4.33E+00 -7.63E+00 -9.87E+00 -9.18E+00 -8.37E+00 -5.47E+00 -3.18E+00 -1.88E+00 -1.03E+01 

 STD 3.07E+00 2.82E+00 1.01E-03 2.89E+00 1.72E-05 2.90E+00 3.05E+00 1.87E+00 2.66E+00 2.85E+00 1.34E+00 1.60E+00 8.13E-01 1.20E+00 

 
 
 

Table 7. Homogeneous subsets of different algorithms by post-analysis of one-way 
ANOVA on multi-modal functions 

 
Benchmark PSO MVO GWO MFO CS BAT WOA FFA SSA GA HHO SCA JAYA DE 

F14 3 1 3 1 1 4 3 1 1 1 1 2 1 1 

F15 3 2 3 1 1 4 1 2 1 1 1 1 1 1 

F16 1 1 1 1 1 2 1 1 1 1 1 1 2 1 

F17 1 1 1 1 1 2 1 1 1 1 1 1 1 1 

F18 1 1 1 1 1 2 1 1 1 1 1 1 1 1 

F19 1 1 1 1 1 2 1 1 1 1 1 1 3 1 

F20 1 1 1 1 1 1 1 1 1 1 1 2 3 1 

F21 3 3 2 2 1 4 2 2 2 4 4 5 5 2 

F22 5 4 2 6 1 7 4 3 3 6 6 8 8 3 

F23 3 3 2 3 1 5 3 2 3 3 4 6 6 1 
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exploration capabilities (Heidari et al., 
2019; Yang & Deb, 2009). As men-
tioned above, Lévy-Flights is a series of 
straight flight paths punctuated by a sud-
den 90∘ turn and successfully applied to 
many optimization algorithms  
(Pavlyukevich, 2007; Shlesinger, 2006). 
This particular operator will ensure the 
optimization process will not be trapped 
in a local optimum (Yang & Deb, 2009). 
The special interesting brood parasitic 
behavior of the CS algorithm enhances 
the exploration capability (Yang & Deb, 
2009). It might explain why the CS ob-
tained better experimental performance 
than HHO and other algorithms on 
fixed-dimensional multi-modal functions. 
Some researchers employ the chaotic 
sequences to specify the fraction prob-
ability on the CS to improve the explora-
tion capability (Pan et al., 2019). 

 
Conclusion and Future Directions 

 
We selected 14 algorithms from 

state-of-the-art Population-based meta-
heuristic algorithms for solving 23 un-
constrained optimization benchmark 
functions in this work. According to the 
NFL theorem, no meta-heuristic is suited 
for solving all kinds of optimization 
problems. Therefore, we executed the 
post-analysis of the one-way ANOVA 
on the experimental results. The analysis 
findings show that the HHO and GWO 
algorithms are robust and more suitable 
for unimodal functions. In addition to 
the HHO being the best, the WOA and 
GWO are also good choices for multi-
modal functions. The CS algorithm per-
forms more competitively on fixed-
dimensional multi-modal functions than 
other algorithms. If we don't know 

which function the problem belongs to, 
the HHO and CS algorithms are excel-
lent initial ways to deal with them. 

 
We also identify the common char-

acteristics of HHO, GWO, WOA, and 
CS, which are superior algorithms on 
different modals functions. The HHO, 
GWO, and WOA have similar mecha-
nisms, such as searching (exploration), 
encircling, and attacking (exploitation) 
prey. The HHO and CS adopt the Lévy-
flight-style random walk strategy to en-
hance the exploitation and exploration 
capabilities. These potential and com-
petitive conclusions could help us to 
achieve efficient, advanced, and stable 
equilibria among the exploratory and 
exploitative propensity algorithms to es-
cape the local optima stagnation and find 
the most satisfactory solution in the fu-
ture. 
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